Participating groups and their research interests

At the MPI-PKS:

  • Finite Systems Division  (Prof. JM Rost, Prof. U Saalmann)
    • Semi-classical description of excitation and fragmentation of atoms, molecules and clusters 
    • Dynamics of ultra-cold gases and plasmas 
    • Interaction of matter with intense laser radiation 
    • Coherent diffractive imaging with novel Xray machines
    • Quantum information theory and entanglement 
       
  •  Condensed Matter Division (Prof. R Moessner)
    • Order, disorder and topology in condensed matter (magnetism, superconductivity, quantum Hall physics)
    • Numerical algorithm development
    • Non-equilibrium quantum dynamics 
       
  • Quantum Aggregates (Dr. A Eisfeld)
    • Energy transfer in Photosynthesis 
    • Self-assembled molecular aggregates 
    • Stochastic Schrödinger equations for open systems 
    • Mixed quantum-classical methods 
    • Nano-electro-mechanical devices
       
  • Correlations and Transport in Rydberg Matter (Dr. M Eiles)
    • Transport, localization, and correlation in interacting Rydberg atoms and molecules 
    • Quantum scar states in single-particle and many-body systems 
    • External control and manipulation of Rydberg molecules
       
    •  Quantum Many-Body Systems (Dr. A Nielsen) 
      • Strongly-correlated quantum many-body systems
      • Fractional quantum Hall physics in lattice systems
         
    •  Fractionalization and Topology in Quantum Matter (Prof. I Sodemann) 
      • Fractional quantum Hall systems
      • Graphene and topological insulators
      • Unconventional spin and charge transport
         
    • Correlations and Topology (Dr. AM Cook)
      • Martingale topological phases of matter
      • Three-dimensional topological Skyrmion phases of matter
      • Generalized superexchange theory of anions with non-negligible spin-orbit coupling
         
    • Strongly Correlated Light-Matter Systems  (Dr. F Piazza) 
      • Out-of-equilibrium quantum field theory
      • Dynamical phase transitions and novel phases in photon-atom plasmas
         
    • Nonequilibrium Quantum Dynamics (Dr. M Bukov)
      • Nonequilibrium dynamics
      • Quantum engineering
      • Equilibration and thermalization of nonequilibrium quantum systems
      • Control and manipulation of nonequilibrium quantum many-body states
      • Machine learning techniques in quantum many-body dynamics
         
    •  Superconductivity and Magnetic Correlations (Dr. A Wietek) 
      • Strongly correlated superconductors
      • Frustrated magnetism
      • Exotic states of matter
      • Quantum spin liquids
      • Thermal transport
      • Tensor network algorithms
      • High-performance computing for quantum many-body systems
         
    • Dynamics of Quantum Information (Dr. P Claeys)
      • Entanglement dynamics in hybrid quantum circuits
      • Exactly solvable models of chaotic quantum many-body dynamics
      • Geometric probes of chaos and nonergodicity in quantum circuits
      • Quantum control algorithms for noisy quantum computers

      At the IFW Dresden:

      •  Experimental Physics (Prof. B Büchner)
        • Strongly correlated electron systems
        • Unconventional superconductivity and magnetism including iron based superconductors and high Tc cuprates
        • Novel materials: transition metal oxides, lanthanides, molecular nanostructures and molecular magnets

      At the TU Dresden:

      • Theoretical Chemistry (Prof. T Heine)
        • DFT Method Development
        • Metal-organic frameworks
        • Proton transfer reactions in soft matter
        • Ultrathin materials
        • Hydrogen storage in graphene-based nanostructures
        • Molybdenum disulfide monolayers and nanotubes
           
      •  Computational Physics (Prof. R Ketzmerick, Prof. A Bäcker)
        • Quantum signatures of regular and chaotic dynamics
        • Chaos in higher-dimensional systems
        • Structure  of eigenfunctions in open systems
        • Tunneling in systems  with a mixed phase space
           
      • Quantum Many-Body Theory (Prof. JC Budich)
        • Topological phases of quantum matter
        • Non-equilibrium dynamics and dissipation in quantum many-body systems
        • Ultracold atomic gases
        • Strongly correlated systems
           
      • Theoretical Quantum Optics (Prof. W Strunz)
        • Open quantum systems and decoherence
        • Non-Markovian quantum processes 
        • Counting statistics and quantum transport
           
      • Theoretical Atomic and Molecular Physics (Prof. R Schmidt, Prof. F Großmann) 
        • Initial value representation of time-dependent semiclassical quantum dynamics
        • Semiclassical description  of decoherence and dissipation in open quantum systems
        • Atoms, molecules and electrons in solids under the influence of extreme laser fields
           
      • Materials Science and Nanotechnology (Prof. G Cuniberti) 
        • Bioelectronics: dissipative quantum transport in the presence of internal disorder, molecular vibrations and buffer solution 
        • Mesoscopic physics: contact effects, noise, spin injection, Andreev reflection, weak and strong localization, quantum Hall effect 
        • Molecular electronics: inelastic electron tunneling spectroscopy, Coulomb blockade, coherent transport of charge and spin
           
      • Correlated Electrons and Topology (Jun. Prof. HH Tu)
        • Tensor network states for quantum many-body systems
        • Topological phases of matter
        • Conformal field theories
           
      • Collective Dynamics (Dr. M Haque)
        • Dynamics of Quantum Gases
        • Thermalization of isolated quantum systems
        • Open-system dynamics and non-hermitian spectra

       At the Institute of Organic Chemistry and Biochemistry, Prague:

      • Computational Chemistry (Prof. P Jungwirth)
        • Molecular simulations of ions at aqueous interfaces, including interactions of ions with proteins and membranes  
        • Chemistry of aqueous aerosols, structure and dynamics of solvated electrons

      At the University of Chemistry and Technology, Prague:

      • Theoretical Photodynamics (Prof. P Slavicek)
        • Theoretical spectroscopy and dynamics in the condensed phase
        • Ab initio classical and quantum simulations of photoinduced processes
        • Electron transfer processes in chemistry
        • Nuclear quantum effects

      At the Charles University, Prague:

      • Quantum Chemistry (Prof. O Marsalek)
        • Ab initio molecular dynamics of liquid solutions
        • Nuclear quantum effects and path integral molecular dynamics methodology
        • Hydrogen bonding and charge defects in the condensed phase
        • Modelling time-resolved vibrational spectroscopy

      At the Institute of Low Temperature and Structure Research, Wrocław:

      At the University of Wrocław:

      • Elementary Particle Theory (Prof. D Blaschke, Prof. A Sedrakian)
        • The physics of ultra-relativistic heavy ion collisions
        • The physics of compact stars and supernovae
        • Kinetics of particle production in strong fields
        • Relativistic hydrodynamics and transport in complex systems
           
      • Superconductivity/ Superfluidity in strongly correlated systems (Prof. D Blaschke, Prof. A Sedrakian)
        • Mott transition and BEC/BCS crossover

      At the Wrocław University of Science and Technology:

      • Theoretical Physics (Dr. P Surówka)
        • Effective field theory
        • Hydrodynamics and transport in semi-metals
        • Active matter and odd elasticity