Participating groups and their research interests

At the MPI-PKS:

  • Finite Systems Division  (Prof. JM Rost, Prof. U Saalmann)
    • Semi-classical description of excitation and fragmentation of atoms, molecules and clusters 
    • Dynamics of ultra-cold gases and plasmas 
    • Interaction of matter with intense laser radiation 
    • Coherent diffractive imaging with novel Xray machines
    • Quantum information theory and entanglement 
  •  Condensed Matter Division (Prof. R Moessner)
    • Order, disorder and topology in condensed matter (magnetism, superconductivity, quantum Hall physics)
    • Numerical algorithm development
    • Non-equilibrium quantum dynamics 
  • Quantum Aggregates (Dr. A Eisfeld)
    • Energy transfer in Photosynthesis 
    • Self-assembled molecular aggregates 
    • Stochastic Schrödinger equations for open systems 
    • Mixed quantum-classical methods 
    • Nano-electro-mechanical devices
  • Ultra-fast Laser-Matter Interaction (Dr. A Landsman)  
    • Attosecond physics at the nanoscale
    • Strong field processes in inhomogeneous laser fields 
    • Theory of photoionization delays 
    • Strong field ionization of atoms and molecules
    • Strong field ultrafast processes in solids
  •  Nonequilibrium Quantum Matter  (Dr. T Oka) 
    •  Floquet Topological Phase Transition
    •  Nonequilibrium theory of strongly correlated superconductors
    •  Ultrafast spintronics
    •  Schwinger Effect
    •  Gauge/gravity duality
  •  Quantum Many-Body Systems (Dr. A Nielsen) 
    • Strongly-correlated quantum many-body systems
    • Fractional quantum Hall physics in lattice systems

  •  Quantum Chaos and Quantum Dynamics  (Dr. A Eckardt, Prof. R Ketzmerick) 
    • Many-body Floquet systems
    • Ultracold atomic quantum gases
    • Driven-dissipative many-body systems of both photons and massive particles
    • Quantum signatures of regular and chaotic dynamics
  • Dynamics in Correlated Quantum Matter  (Dr. M Heyl) 
    • Quantum dynamics
    • Exotic nonequilibrium phases and order
    • Quantum information concepts in quantum matter
    • Artificial neural networks for quantum many-body systems

At the IFW Dresden:

  •  Experimental Physics (Prof. B Büchner)
    • Strongly correlated electron systems
    • Unconventional superconductivity and magnetism including iron based superconductors and high Tc cuprates
    • Novel materials: transition metal oxides, lanthanides, molecular nanostructures and molecular magnets

At the TU Dresden:

  • Theoretical Chemistry (Prof. T Heine)
    • DFT Method Development
    • Metal-organic frameworks
    • Proton transfer reactions in soft matter
    • Ultrathin materials
    • Hydrogen storage in graphene-based nanostructures
    • Molybdenum disulfide monolayers and nanotubes
  •  Computational Physics (Prof. R Ketzmerick, Prof. A Bäcker)
    • Quantum signatures of regular and chaotic dynamics
    • Chaos in higher-dimensional systems
    • Structure  of eigenfunctions in open systems
    • Tunneling in systems  with a mixed phase space

  • Quantum Many-Body Theory (Prof. JC Budich)
    • Topological phases of quantum matter
    • Non-equilibrium dynamics and dissipation in quantum many-body systems
    • Ultracold atomic gases
    • Strongly correlated systems
  • Theoretical Quantum Optics (Prof. W Strunz)
    • Open quantum systems and decoherence
    • Non-Markovian quantum processes 
    • Counting statistics and quantum transport

  • Theoretical Atomic and Molecular Physics (Prof. R Schmidt, PD Dr. F Grossmann) 
    • Initial value representation of time-dependent semiclassical quantum dynamics
    • Semiclassical description  of decoherence and dissipation in open quantum systems
    • Atoms, molecules and electrons in solids under the influence of extreme laser fields

  • Materials Science and Nanotechnology (Prof. G Cuniberti) 
    • Bioelectronics: dissipative quantum transport in the presence of internal disorder, molecular vibrations and buffer solution 
    • Mesoscopic physics: contact effects, noise, spin injection, Andreev reflection, weak and strong localization, quantum Hall effect 
    • Molecular electronics: inelastic electron tunneling spectroscopy, Coulomb blockade, coherent transport of charge and spin
  • Correlated Electrons and Topology (Jun. Prof. HH Tu)
    • Tensor network states for quantum many-body systems
    • Topological phases of matter
    • Conformal field theories

 At the Institute of Organic Chemistry and Biochemistry, Prague:

  • Computational Chemistry (Prof. P Jungwirth)  
    • Molecular simulations of ions at aqueous interfaces, including interactions of ions with proteins and membranes  
    • Chemistry of aqueous aerosols, structure and dynamics of solvated electrons

At the University of Chemistry and Technology, Prague:

  • Theoretical Photodynamics (Prof. P Slavicek) 
    • Theoretical spectroscopy and dynamics in the condensed phase
    • Ab initio classical and quantum simulations of photoinduced processes
    • Electron transfer processes in chemistry
    • Nuclear quantum effects.

At the Charles University, Prague:

  • Quantum Chemistry (Prof. O Marsalek) 
    • Ab initio molecular dynamics of liquid solutions
    • Nuclear quantum effects and path integral molecular dynamics methodology
    • Hydrogen bonding and charge defects in the condensed phase
    • Modelling time-resolved vibrational spectroscopy

At the Institute of Low Temperature and Structure Research, Wroclaw:

  •  Division of Condensed Matter Theory (Prof. J Sznajd, Dr. T Zaleski)
    • Unconventional superconductivity and strongly correlated electrons 
    • Theory of phase transitions and magnetism
    • Electronic structure 
    • Ultracold atoms in optical lattices

At the University of Wroclaw: