Participating groups and their research interests

At the MPI-PKS:

  • Finite Systems Division  (Prof. JM Rost, Prof. U Saalmann)
    • Semi-classical description of excitation and fragmentation of atoms, molecules and clusters 
    • Dynamics of ultra-cold gases and plasmas 
    • Interaction of matter with intense laser radiation 
    • Coherent diffractive imaging with novel Xray machines
    • Quantum information theory and entanglement 
  •  Condensed Matter Division (Prof. R Moessner)
    • Order, disorder and topology in condensed matter (magnetism, superconductivity, quantum Hall physics)
    • Numerical algorithm development
    • Non-equilibrium quantum dynamics 
  • Quantum Aggregates (Dr. A Eisfeld)
    • Energy transfer in Photosynthesis 
    • Self-assembled molecular aggregates 
    • Stochastic Schrödinger equations for open systems 
    • Mixed quantum-classical methods 
    • Nano-electro-mechanical devices
  • Correlations and Transport in Rydberg Matter (Dr. M Eiles)
    • Transport, localization, and correlation in interacting Rydberg atoms and molecules 
    • Quantum scar states in single-particle and many-body systems 
    • External control and manipulation of Rydberg molecules
  •  Computational Quantum Many-Body Physics (Dr. D Luitz) 
    •  Tensor network methods for frustrated magnets in higher dimensions
    •  Dynamical phenomena in quantum many-body systems out of equilibrium
    •  Open quantum many-body systems
    •  Many-body localization and nonequilibrium phase transitions
  •  Quantum Many-Body Systems (Dr. A Nielsen) 
    • Strongly-correlated quantum many-body systems
    • Fractional quantum Hall physics in lattice systems
  •  Dynamics in Correlated Quantum Matter  (Dr. M Heyl) 
    • Quantum dynamics
    • Exotic nonequilibrium phases and order
    • Quantum information concepts in quantum matter
    • Artificial neural networks for quantum many-body systems
  • Correlations and Topology (Dr. AM Cook)
    • Martingale topological phases of matter
    • Three-dimensional topological Skyrmion phases of matter
    • Generalized superexchange theory of anions with non-negligible spin-orbit coupling

    At the IFW Dresden:

    •  Experimental Physics (Prof. B Büchner)
      • Strongly correlated electron systems
      • Unconventional superconductivity and magnetism including iron based superconductors and high Tc cuprates
      • Novel materials: transition metal oxides, lanthanides, molecular nanostructures and molecular magnets

    At the TU Dresden:

    • Theoretical Chemistry (Prof. T Heine)
      • DFT Method Development
      • Metal-organic frameworks
      • Proton transfer reactions in soft matter
      • Ultrathin materials
      • Hydrogen storage in graphene-based nanostructures
      • Molybdenum disulfide monolayers and nanotubes
    •  Computational Physics (Prof. R Ketzmerick, Prof. A Bäcker)
      • Quantum signatures of regular and chaotic dynamics
      • Chaos in higher-dimensional systems
      • Structure  of eigenfunctions in open systems
      • Tunneling in systems  with a mixed phase space
    • Quantum Many-Body Theory (Prof. JC Budich)
      • Topological phases of quantum matter
      • Non-equilibrium dynamics and dissipation in quantum many-body systems
      • Ultracold atomic gases
      • Strongly correlated systems
    • Theoretical Quantum Optics (Prof. W Strunz)
      • Open quantum systems and decoherence
      • Non-Markovian quantum processes 
      • Counting statistics and quantum transport
    • Theoretical Atomic and Molecular Physics (Prof. R Schmidt, Prof. F Großmann) 
      • Initial value representation of time-dependent semiclassical quantum dynamics
      • Semiclassical description  of decoherence and dissipation in open quantum systems
      • Atoms, molecules and electrons in solids under the influence of extreme laser fields
    • Materials Science and Nanotechnology (Prof. G Cuniberti) 
      • Bioelectronics: dissipative quantum transport in the presence of internal disorder, molecular vibrations and buffer solution 
      • Mesoscopic physics: contact effects, noise, spin injection, Andreev reflection, weak and strong localization, quantum Hall effect 
      • Molecular electronics: inelastic electron tunneling spectroscopy, Coulomb blockade, coherent transport of charge and spin
    • Correlated Electrons and Topology (Jun. Prof. HH Tu)
      • Tensor network states for quantum many-body systems
      • Topological phases of matter
      • Conformal field theories

     At the Institute of Organic Chemistry and Biochemistry, Prague:

    • Computational Chemistry (Prof. P Jungwirth)  
      • Molecular simulations of ions at aqueous interfaces, including interactions of ions with proteins and membranes  
      • Chemistry of aqueous aerosols, structure and dynamics of solvated electrons

    At the University of Chemistry and Technology, Prague:

    • Theoretical Photodynamics (Prof. P Slavicek) 
      • Theoretical spectroscopy and dynamics in the condensed phase
      • Ab initio classical and quantum simulations of photoinduced processes
      • Electron transfer processes in chemistry
      • Nuclear quantum effects.

    At the Charles University, Prague:

    • Quantum Chemistry (Prof. O Marsalek) 
      • Ab initio molecular dynamics of liquid solutions
      • Nuclear quantum effects and path integral molecular dynamics methodology
      • Hydrogen bonding and charge defects in the condensed phase
      • Modelling time-resolved vibrational spectroscopy

    At the Institute of Low Temperature and Structure Research, Wroclaw:

    •  Division of Condensed Matter Theory (Prof. J Sznajd, Dr. T Zaleski)
      • Unconventional superconductivity and strongly correlated electrons 
      • Theory of phase transitions and magnetism
      • Electronic structure 
      • Ultracold atoms in optical lattices

    At the University of Wroclaw: